An Adaptive Threshold in Mammalian Neocortical Evolution
نویسندگان
چکیده
Expansion of the neocortex is a hallmark of human evolution. However, determining which adaptive mechanisms facilitated its expansion remains an open question. Here we show, using the gyrencephaly index (GI) and other physiological and life-history data for 102 mammalian species, that gyrencephaly is an ancestral mammalian trait. We find that variation in GI does not evolve linearly across species, but that mammals constitute two principal groups above and below a GI threshold value of 1.5, approximately equal to 109 neurons, which may be characterized by distinct constellations of physiological and life-history traits. By integrating data on neurogenic period, neuroepithelial founder pool size, cell-cycle length, progenitor-type abundances, and cortical neuron number into discrete mathematical models, we identify symmetric proliferative divisions of basal progenitors in the subventricular zone of the developing neocortex as evolutionarily necessary for generating a 14-fold increase in daily prenatal neuron production, traversal of the GI threshold, and thus establishment of two principal groups. We conclude that, despite considerable neuroanatomical differences, changes in the length of the neurogenic period alone, rather than any novel neurogenic progenitor lineage, are sufficient to explain differences in neuron number and neocortical size between species within the same principal group.
منابع مشابه
Evolutionary conservation of neocortical neurogenetic program in the mammals and birds
The unique innovation of the layered neocortex in mammalian evolution is believed to facilitate adaptive radiation of mammalian species to various ecological environments by furnishing high information processing ability. There are no transitional states from the non-mammalian simple brain to the mammalian multilayered neocortex, and thus it is totally a mystery so far how this brain structure ...
متن کاملP15: Hippocampus-Neocortical Communication in Learning
The hippocampus is located in the medial temporal lobe and is a part of the forebrain. It plays a critical role in formation of declared memories. The hippocampus is banana­-shaped and communicates with all parts of neocortex. Reptiles and birds have structures like hippocampus that potentially serve as navigation functions. During the mammalian evolution, the neocortex has a large expansio...
متن کاملNeocortical development as an evolutionary platform for intragenomic conflict
Embryonic development in mammals has evolved a platform for genomic conflict between mothers and embryos and, by extension, between maternal and paternal genomes. The evolutionary interests of the mother and embryo may be maximized through the promotion of sex-chromosome genes and imprinted alleles, resulting in the rapid evolution of postzygotic phenotypes preferential to either the maternal o...
متن کاملHow Folded Brains Evolved in Mammals
One hallmark of human evolution is the expansion of a part of the brain called the neocortex, which is involved in high-level functions such as sensory perception, language, and conscious thought. Despite considerable progress in the study of brain size evolution, the adaptive mechanism that evolved along certain mammalian lineages to produce a large and folded neocortex has not been clear. In ...
متن کاملNeuronal subtype specification in establishing mammalian neocortical circuits
The functional integrity of the neocortical circuit relies on the precise production of diverse neuron populations and their assembly during development. In recent years, extensive progress has been made in the understanding of the mechanisms that control differentiation of each neuronal type within the neocortex. In this review, we address how the elaborate neocortical cytoarchitecture is esta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2014